Kalita, B., Zubatyuk, R., Anstine, D. M., Bergeler, M., Settels, V., Stork, C., Spicher, S., Isayev, O.,
AIMNet2-NSE: A Transferable Reactive Neural Network Potential for Open-Shell Chemistry,
under review,
https://doi.org/10.26434/chemrxiv-2025-kdg6n
Nayal, K. S., O'Connor, D., Zubatyuk, R., Anstine, D. M., Yang, Y., Tom, R., Deng, W., Tang, K., Marom, N., Isayev, O.,
Efficient Molecular Crystal Structure Prediction and Stability Assessment with AIMNet2 Neural Network Potentials,
under review,
https://doi.org/10.26434/chemrxiv-2025-ksn4n
Anstine, D. M., Zhao, Q., Zubatyuk, R., Zhang, S., Singla, V., Nikitin, F., Savoie, B. M., Isayev, O.,
AIMNet2-rxn: A Machine Learned Potential for Generalized Reaction Modeling on a Millions-of-Pathways Scale,
under review,
https://doi.org/10.26434/chemrxiv-2025-hpdmg
Rapp, J., Anstine, D. M., Gusev, F., Nikitin, F., Yun, K., Borden, M., Bhat, V., Isayev, O., Leibfarth, F.,
Design of Tough 3D Printable Elastomers with Human-in-the-Loop Reinforcement Learning,
Angewandte Chemie, accepted
https://doi.org/10.1002/ange.202513147
Anstine, D. M., Zubatyuk, R., Gallegos, L., Paton, R., Weist, O., Nebgen B., Jones, T., Gomes, G., Tretiak, S., Isayev, O.,
Transferable Machine Learning Interatomic Potential for Pd-Catalyzed Cross-Coupling Reactions,
under review,
https://doi.org/10.26434/chemrxiv-2025-n36r6
PreMSU Publications
Casetti, N., Anstine, D. M., Isayev, O., Coley, C.,
Anticipating the Selectivity of Cyclization Reaction Pathways with Neural Network Potentials,
under review,
https://doi.org/10.48550/arXiv.2507.10400
Hunnisett et al.
The Seventh Blind Test of Crystal Structure Prediction: Structure Generation Methods,
Acta Crystallogr., Sect. B: Struct. Sci., 2024, 80(6), 517–547.
https://doi.org/10.1107/S2052520624007492
Hunnisett et al. The Seventh Blind Test of Crystal Structure Prediction: Structure Ranking Methods,
Acta Crystallogr., Sect. B: Struct. Sci., 2024, 80(6), 548-574.
https://doi.org/10.1107/S2052520624008679
Anstine*, D. M., Zubatyuk*, R., Isayev, O., AIMNet2: A Neural Network Potential to Meet your Neutral, Charged, Organic, and Elemental-Organic Needs,
ChemRxiv, 2024.
https://doi.org/10.26434/chemrxiv-2023-296ch
Yang, A., Bukowski, B. C., Anstine, D. M., Colina, C. M., Snurr, R. Q., and Dichtel, W. R.,
Defect Engineering of Porous Aromatic Frameworks via End Capping Improves Dioxane Removal from Water,
Matter, 2023, 6(7), 2263-2273.
https://doi.org/10.1016/j.matt.2023.06.013
Zhao, Q., Anstine, D. M., Isayev, O., and Savoie, B. M.,
∆2 Machine Learning for Reaction Property Prediction,
Chem. Sci., 2023, in press.
https://doi.org/10.1039/D3SC02408C
Anstine, D. M., and Isayev, O.,
Generative Models as an Emerging Paradigm in the Chemical Sciences,
J. Am. Chem. Soc., 2023, 145(16), 8736-8750.
https://doi.org/10.1021/jacs.2c13467
Anstine, D. M., and Isayev, O.,
Machine Learning Interatomic Potentials and Long-Range Physics,
J. Phys. Chem. A, 2023, 127(11), 2417-2431.
https://doi.org/10.1021/acs.jpca.2c06778
Shi, K., Li, Z., Anstine, D. M., Tang, D., Colina, C. M., Sholl, D. S., Siepmann, J. I., and Snurr, R. Q.,
Two-Dimensional Energy Histograms as Features for Machine Learning to Predict Adsorption in Diverse Nanoporous Materials,
J. Chem. Theory Comput., 2023, 19(14), 4568-4583.
https://doi.org/10.1021/acs.jctc.2c00798
Morgan, W. J., Anstine, D. M., and Colina, C. M.,
Temperature Effects in Flexible Adsorption Processes for Amorphous Microporous Polymers,
J. Phys. Chem. B, 2022, 126(33), 6354-6365.
https://doi.org/10.1021/acs.jpcb.2c04543
Anstine, D. M., Sholl, D. S., Siepmann, J. I., Snurr, R. Q., Aspuru-Guzik, A., and Colina, C. M.,
In Silico Design and Analysis of Microporous Polymers for Chemical Separations and Gas Storage,
Curr. Opin. Chem. Eng., 2022, 36, 100795.
https://doi.org/10.1016/j.coche.2022.100795
Mercado-Montijo*, J., Anstine*, D. M., Colina, C. M., and Andrew, J. S.,
Polyethylene Glycol Diacrylate Hydrogel Structure from Semi-Dilute Concentrations: Insights from Experiments and Molecular Simulations,
Soft Matter, 2022, 18(18), 3565-3574.
https://doi.org/10.1039/D1SM01708J
Yu, Z., Anstine, D. M., Boulfelfel, S. E., Gu, C., Colina, C. M., and Sholl, D. S.,
Incorporating Flexibility Effects into Metal–Organic Framework Adsorption Simulations Using Different Models,
ACS Appl. Mater. Interfaces, 2021, 13(51), 61305-61315.
https://doi.org/10.1021/acsami.1c20583
Anstine, D. M., Tang, D., Sholl, D. S., and Colina, C. M.,
Adsorption Space for Microporous Polymers with Diverse Adsorbate Species,
npj Comput. Mater., 2021, 7, 53.
https://doi.org/10.1038/s41524-021-00522-8
Anstine*, D. M., Mendez*, N. F., and Colina, C. M.,
Sulfonyl PIM-1: A Diverse Separation Membrane with Dilation Resistance,
AIChE Journal, 2021, 67(3), e17006.
https://doi.org/10.1002/aic.17006
Anstine, D. M. and Colina, C. M.,
Sorption-Induced Polymer Rearrangement: Approaches from Molecular Modeling,
Polymer International, 2021, 70(7), 984-989.
https://doi.org/10.1002/pi.6124
Anstine, D. M., Wu, C., Larentzos, J. P., and Brennan, J. K.,
Computational Model Builder and Analysis Toolkit (COMBAT): Demonstrating Capabilities through Practical Examples,
ARL Technical Report, 2020, ARL-TR-8914.
https://apps.dtic.mil/sti/citations/AD1092611
Anstine, D. M., Demidov, A. G., Mendez, N. F., Morgan, W. J., and Colina, C. M.,
Screening PIM-1 Performance as a Membrane for Binary Mixture Separation of Gaseous Organic Compounds,
J. Membr. Sci., 2020, 599, 117798.
https://doi.org/10.1016/j.memsci.2019.117798
Anstine, D. M., Strachan, A., and Colina, C. M.,
Effects of an Atomistic Modeling Approach on Predicted Mechanical Properties of Glassy Polymers via Molecular Dynamics,
Model. Simul. Mater. Sci., 2020, 28(2), 025006.
https://doi.org/10.1088/1361-651X/ab615c
Rukmani, S. J., Anstine, D. M., Munasinghe, A., and Colina, C. M.,
An Insight into Structural and Mechanical Properties of Ideal-Networked Poly(Ethylene Glycol)-Peptide Hydrogels from Molecular Dynamics Simulations,
Macromol. Chem. Phys., 2020, 221(3), 1900326.
https://doi.org/10.1002/macp.201900326
Rukmani, S. J., Kupgan, G., Anstine, D. M., and Colina, C. M.,
A Molecular Dynamics Study of Water-Soluble Polymers: Analysis of Force Fields from Atomistic Simulations,
Mol. Simulat., 2019, 45(4-5), 310-231.
https://doi.org/10.1080/08927022.2018.1531401
Choi, J., Chang, E. H., Anstine, D. M., and Chakraborty, H. S.,
Effects of Exchange-Correlation Potentials on the Density-Functional Description of C60 versus C240 Photoionization,
Phys. Rev. A., 2017, 95(2), 023404.
https://doi.org/10.1103/PhysRevA.95.023404
Werlé, C., Anstine, D. M., Karmazin, L., Bailly, C., Ricard, L., and Djukic, J.,
New PD(ii) Hemichelates Devoid of Incipient Bridging CO…Pd Interactions,
Dalton Trans., 2016, 45(2), 607-617.
https://doi.org/10.1039/C5DT03648H
Magrakvelidze, M., Anstine, D. M., Dixit, G., Madjet, M. E. A., and Chakraborty, H. S.,
Attosecond Structures from the Molecular Cavity in Fullerene Photoemission Time Delay,
Phys. Rev. A., 2015, 91(5), 053407.
https://doi.org/10.1103/PhysRevA.91.053407
Shi, K., Magrakvelidze, M., Anstine, D. M., Madjet, M. E. A., and Chakraborty, H. S.,
Attosecond Time Delay in the Valence Photoionization of C240 and C60,
J. Phys.: Conf. Ser., 2015, 635, 112025.
https://doi.org/10.1088/1742-6596/635/11/112025